Parameter: carvingwidth

Definition:

Consider a decomposition $(T,\chi)$ of a graph $G$ where $T$ is a binary tree with $|V(G)|$ leaves and $\chi$ is a bijection mapping the leaves of $T$ to the vertices of $G$. Every edge $e \in E(T)$ of the tree $T$ partitions the vertices of the graph $G$ into two parts $V_e$ and $V \backslash V_e$ according to the leaves of the two connected components in $T - e$. The width of an edge $e$ of the tree is the number of edges of a graph $G$ that have exactly one endpoint in $V_e$ and another endpoint in $V \backslash V_e$. The width of the decomposition $(T,\chi)$ is the largest width over all edges of the tree $T$. The carvingwidth of a graph is the minimum width over all decompositions as above.

References

[1699]
R. Sasák
Comparing 17 graph parameters
Master's thesis, University of Bergen 2010
[1720]
P. D. Seymour, R. Thomas
Call routing and the ratcatcher
Combinatorica 14 No.2, 217-241 (1994)

Relations

Minimal/maximal is with respect to the contents of ISGCI. Only references for direct bounds are given. Where no reference is given, check equivalent parameters.

Minimal upper bounds for this parameter

[+]Details

This parameter is a minimal upper bound for

[+]Details

Problems

Problems in italics have no summary page and are only listed when ISGCI contains a result for the current parameter.

3-Colourability
[?]
Input: A graph G in this class.
Output: True iff each vertex of G can be assigned one colour out of 3 such that whenever two vertices are adjacent, they have different colours.
FPT [+]Details
Clique
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of pairwise adjacent vertices, with |S| >= k.
FPT [+]Details
Clique cover
[?]
Input: A graph G in this class and an integer k.
Output: True iff the vertices of G can be partitioned into k sets Si, such that whenever two vertices are in the same set Si, they are adjacent.
XP [+]Details
Colourability
[?]
Input: A graph G in this class and an integer k.
Output: True iff each vertex of G can be assigned one colour out of k such that whenever two vertices are adjacent, they have different colours.
FPT [+]Details
Domination
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of vertices, with |S| <= k, such that every vertex in G is either in S or adjacent to a vertex in S.
FPT [+]Details
Feedback vertex set
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of vertices, with |S| <= k, such that every cycle in G contains a vertex from S.
FPT [+]Details
Graph isomorphism
[?]
Input: Graphs G and H in this class
Output: True iff G and H are isomorphic.
FPT [+]Details
Hamiltonian cycle
[?]
Input: A graph G in this class.
Output: True iff G has a simple cycle that goes through every vertex of the graph.
FPT [+]Details
Hamiltonian path
[?]
Input: A graph G in this class.
Output: True iff G has a simple path that goes through every vertex of the graph.
FPT [+]Details
Independent set
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, such that |S| >= k.
FPT [+]Details
Maximum cut
[?]
(decision variant)
Input: A graph G in this class and an integer k.
Output: True iff the vertices of G can be partitioned into two sets A,B such that there are at least k edges in G with one endpoint in A and the other endpoint in B.
FPT [+]Details
Monopolarity
[?]
Input: A graph G in this class.
Output: True iff G is monopolar.
Unknown to ISGCI [+]Details
Polarity
[?]
Input: A graph G in this class.
Output: True iff G is polar.
XP [+]Details
Weighted clique
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
FPT [+]Details
Weighted feedback vertex set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of vertices, such that the sum of the weights of the vertices in S is at most k and every cycle in G contains a vertex from S.
FPT [+]Details
Weighted independent dominating set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, with the sum of the weights of the vertices in S at most k, such that every vertex in G is either in S or adjacent to a vertex in S.
FPT [+]Details
Weighted independent set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
FPT [+]Details

Graph classes

Bounded

Unbounded

Open

Unknown to ISGCI