Parameter: distance to clique

Definition:

Let $G$ be a graph. Its distance to clique is the minimum number of vertices that have to be deleted from $G$ in order to obtain a clique.

Relations

Minimal/maximal is with respect to the contents of ISGCI. Only references for direct bounds are given. Where no reference is given, check equivalent parameters.

This parameter is a minimal upper bound for

[+]Details

Problems

Problems in italics have no summary page and are only listed when ISGCI contains a result for the current parameter.

3-Colourability
[?]
Input: A graph G in this class.
Output: True iff each vertex of G can be assigned one colour out of 3 such that whenever two vertices are adjacent, they have different colours.
Unknown to ISGCI [+]Details
Clique
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of pairwise adjacent vertices, with |S| >= k.
Unknown to ISGCI [+]Details
Clique cover
[?]
Input: A graph G in this class and an integer k.
Output: True iff the vertices of G can be partitioned into k sets Si, such that whenever two vertices are in the same set Si, they are adjacent.
Unknown to ISGCI [+]Details
Colourability
[?]
Input: A graph G in this class and an integer k.
Output: True iff each vertex of G can be assigned one colour out of k such that whenever two vertices are adjacent, they have different colours.
Unknown to ISGCI [+]Details
Domination
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of vertices, with |S| <= k, such that every vertex in G is either in S or adjacent to a vertex in S.
Unknown to ISGCI [+]Details
Feedback vertex set
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of vertices, with |S| <= k, such that every cycle in G contains a vertex from S.
Unknown to ISGCI [+]Details
Graph isomorphism
[?]
Input: Graphs G and H in this class
Output: True iff G and H are isomorphic.
Unknown to ISGCI [+]Details
Hamiltonian cycle
[?]
Input: A graph G in this class.
Output: True iff G has a simple cycle that goes through every vertex of the graph.
Unknown to ISGCI [+]Details
Hamiltonian path
[?]
Input: A graph G in this class.
Output: True iff G has a simple path that goes through every vertex of the graph.
Unknown to ISGCI [+]Details
Independent set
[?]
Input: A graph G in this class and an integer k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, such that |S| >= k.
XP [+]Details
Maximum cut
[?]
(decision variant)
Input: A graph G in this class and an integer k.
Output: True iff the vertices of G can be partitioned into two sets A,B such that there are at least k edges in G with one endpoint in A and the other endpoint in B.
FPT [+]Details
Monopolarity
[?]
Input: A graph G in this class.
Output: True iff G is monopolar.
Unknown to ISGCI [+]Details
Polarity
[?]
Input: A graph G in this class.
Output: True iff G is polar.
Unknown to ISGCI [+]Details
Weighted clique
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
Unknown to ISGCI [+]Details
Weighted feedback vertex set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of vertices, such that the sum of the weights of the vertices in S is at most k and every cycle in G contains a vertex from S.
Unknown to ISGCI [+]Details
Weighted independent dominating set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, with the sum of the weights of the vertices in S at most k, such that every vertex in G is either in S or adjacent to a vertex in S.
XP [+]Details
Weighted independent set
[?]
Input: A graph G in this class with weight function on the vertices and a real k.
Output: True iff G contains a set S of pairwise non-adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
XP [+]Details

Graph classes

Bounded

Unbounded

Open

Unknown to ISGCI